数学七大能力包括:抽象概括能力、空间想象能力、推理论证能力、运算求解能力、数据处理能力、应用意识、创新意识
数学七大能力包括哪些1
1、抽象概括能力
抽象是指舍弃事物非本质的属性,揭示其本质属性:概括是指把仅仅属于某一类对象的共同属性区分出来的思维过程。抽象和概括是相互联系的,没有抽象就不可能有概括,而概括必须在抽象的基础上得出某种观点或某个结论。
抽象概括能力是对具体的、生动的实例,在抽象概括的过程中,发现研究对象的本质;从给定的大量信息材料中概括出一些结论,并能将其应用于解决问题或作出新的判断。
2、空间想象能力
能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地解释揭示问题的本质。
空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、画图和对图像的想象能力。识图是指观察研究所给图形中几何元素之间的相互关系。
画图是指将文字语言和符号语言转化为图形语言 以及对图形添加辅助图形或对图形进行各种变换。对图形的想象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志。
3、推理论证能力
推理是思维的基本形式之一,它由前提和结论两部分组成,论证是由已有的正确的前提到被论证的结论的一连串的推理过程,推理既包括演绎推理,也包括合情推理:论证方法及包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法。一般运用和情推理进行猜想,再运用演绎推理进行证明。
中学数学的推理论证能力是根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的初步的推理能力。
4、运算求解能力
会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件寻找与设计合理、简捷的运输途径,能根据要求对数据进行估计和近似运算。
运算求解能力是思维能力和运算技能的结合。运算包括对数学的计算、估值和近似计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等。
运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力。
5、数据处理能力
会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并作出判断。数据处理能力主要依据统计案例中的方法对数据进行整理、分析,并解决给定的实际问题。
6、应用意识
能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题。
能应用相关的数学方法解决问题进而加以验证,并能用数学语言正确地表达和说明。 应用的主要过程是依据现实生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决。
7、创新意识
能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考,探究和研究,提出解决问题的思路,创造性地解决问题。
创新意识是理性思维的高层次表现,对数学问题的”观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识越强。
数学思维与数学思维能力的培养:
1、数学思维概述数学思维:
指在数学活动中的思维,是人脑和数学对象(空间形式、数量关系、结构关系)交互作用并按照一定思维规律认识数学内容的内在理性活动。它既具有思维的一般性质,又有自己的特性。最主要的特性表现在其思维的材料和结果都是数学内容。
2、数学思维的分类:
集中思维与发散思维:集中思维是朝着一个目标、遵循单一的模式,求出归一答案的思维,又称为求同思维;发散思维则表现在解决问题时,能根据已提供的条件,利用已有的知识经验,从多个方向、不同途径去探索思考,以寻求新的解决问题和途径和方法,发散思维又称为求异思维。
再造性思维与创造性思维:再造性思维是指原有的经验和已经掌握的解题方法、策略,在灯似的情境中直接解决问题的思维方式。创造性思维是指在强烈的创新意识的指导下,指导头脑中已有的信息重新加工,产生具有进步意义的新设想、新方法的'思维。
3、数学思维的一般方法:
观察与实验: 观察:是受思维影响的,有目的、有计划地通过视觉器官去认识事物、状态及上线关系的一种主动活动。观察是思维的窗口。实验:是有目的、有控制地创设一些有利观察对象,并对其衽观察和研究的活动方式。
4、初步逻辑思维能力及其培养:
逻辑思维是数学思维的核心。逻辑思维是一种确定的、前后一贯的、有条有理的、有根有据的思维。 概念明确:概念是反映客观事物本质属性的一种思维方式。判断准确:判断是对某个事物的性质,现象作出肯定或否定的思维方式。
数学判断是对数量关系和空间形式有所肯定或否定的一咱方式。表达数学判断的语句又称数学命题。判断是由主概念、谓概念和联系词三部分组成。 推理符合逻辑:推理是由一个或几个已知的判断推出一个新判断的形式。 推理分归纳推理、演绎推理和类比推理三种。
归纳推理(从特殊到一般);演绎推理(从一般到特殊);类比推理(从特殊到特殊)培养初步逻辑思维能力的基本途径: 要挖掘教材中的智力因素,把培养思维能力贯穿于教学的全过程。要给学生提供足够的材料。
要顺着学生的思维,重视学习过程。 要重视数学语言的表述。初步形象思维能力及其培养形象思维:是依托对形象材料的意会,从而对事物作出有关理解的思维。 形象思维的基本形式是表象、直感和想像。
数学七大能力包括哪些2
一、数学口算的必要性
数学口算在学习中占有非常重要的位置,它不仅可以帮助孩子学习数学,而且可以锻炼孩子的思维和记忆能力,培养孩子的计算能力和思维能力,提高孩子的学习成绩和兴趣。由于数学口算涉及到数字运算、思维逻辑等方面,可以锻炼孩子的计算能力,培养孩子的思维能力。而且,数学口算能够提高孩子对数学的兴趣,让孩子了解数学的美妙和重要性。
二、如何强化口算基础
孩子在数学口算中出现错误的原因比较多,有的是速度太快、粗心大意,有的是基础不扎实、技巧不熟练。针对这些问题,家长需要从以下几个方面着手,帮助孩子强化口算基础。
1、培养孩子的数字意识
数字在数学口算中扮演着非常重要的角色,因此,家长可以通过一些有趣的游戏、故事等方式,帮助孩子建立数字概念和数字意识,培养孩子对数字的.敏感度,增强孩子对数字的认识和理解,从而打下良好的数学口算基础。
2、巩固孩子的计算能力
在数学口算中,计算能力是非常重要的。家长可以在家里适度地给孩子设置一些计算题,让孩子进行口算练习,通过反复的练习,巩固孩子的计算能力,并提高孩子在口算中的准确率。
3、教孩子一些口算技巧
在数学口算中,一些口算技巧可以有效地提高孩子的口算正确率。例如,孩子可以通过加法的结合律、交换律、分配律等方法,快速地计算出答案,提高运算速度和准确率。家长可以根据孩子的实际情况,针对性的教授一些口算技巧,帮助孩子更快更准确地完成口算。
三、如何在日常生活中运用口算技巧
除了在学习中进行口算训练,家长还可以在日常生活中运用口算技巧,为孩子提供更多的口算机会。例如,可以将自己的购物清单交给孩子,让孩子计算清单中商品的总价;可以给孩子出些小问题,让孩子用口算的方式解决;可以让孩子算一下剩余的零花钱是否够买心仪的物品。
通过这些方式,不仅可以提高孩子的数学口算正确率,还可以将口算技巧与生活相结合,培养孩子的口算应用能力。
总之,数学口算对于孩子的成长和学习都有着非常重要的作用。家长在帮助孩子进行口算练习时,应该增加趣味性,通过巩固计算基础、教授口算技巧和结合日常生活,提高孩子的数学口算正确率,让孩子能在数学学习中茁壮成长。